CC BY Stockmonkeys.com

2.1 Connecting the Dots:Piggies and Pools

A Develop Understanding Task

1. My little sister, Savannah, is three years old. She has a piggy bank that she wants to fill. She started with five pennies and each day when I come home from school, she is excited when I give her three pennies that are left over from my lunch money. Use a table, a graph, and an equation to create a mathematical model for the number of pennies in the piggy bank on day *n*.

2. Our family has a small pool for relaxing in the summer that holds 1500 gallons of water. I decided to fill the pool for the summer. When I had 5 gallons of water in the pool, I decided that I didn't want to stand outside and watch the pool fill, so I had to figure out how long it would take so that I could leave, but come back to turn off the water at the right time. I checked the flow on the hose and found that it was filling the pool at a rate of 2 gallons every minute. Use a table, a graph, and an equation to create a mathematical model for the number of gallons of water in the pool at *t* minutes.

SECONDARY MATH 1 // MODULE 2 LINEAR & EXPONENTIAL FUNCTIONS - 2.1

3. I'm more sophisticated than my little sister so I save my money in a bank account that pays me 3% interest on the money in the account at the end of each month. (If I take my money out before the end of the month, I don't earn any interest for the month.) I started the account with \$50 that I got for my birthday. Use a table, a graph, and an equation to create a mathematical model of the amount of money I will have in the account after *m* months.

4. At the end of the summer, I decide to drain the 1500 gallon swimming pool. I noticed that it drains faster when there is more water in the pool. That was interesting to me, so I decided to measure the rate at which it drains. I found that 3% was draining out of the pool every minute. Use a table, a graph, and an equation to create a mathematical model of the gallons of water in the pool at *t* minutes.

SECONDARY MATH 1 // MODULE 2 LINEAR & EXPONENTIAL FUNCTIONS - 2.1

5.	Compare problems 1 and 3.	What similarities do you see?	What differences do you notice?
6.	Compare problems 1 and 2	What similarities do you see?	What differences do you notice?
0.	compare problems 1 and 2.	what similar ties do you see.	what unferences do you notice.
7.	Compare problems 3 and 4.	What similarities do you see?	What differences do you notice?